This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

The Phenomenon of Conglomerate Crystallization. XXII. Synthesis and

 Structural Characteristics of H-Carbonato(O,O)-trans-[CO(2,3,2tet) $\left.\left(\mathrm{NO}_{2}\right)\right]_{2} \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$James Cetrullo ${ }^{\text {a }}$; Ivan Bernal ${ }^{\text {a }}$
${ }^{\text {a }}$ Chemistry Department, University of Houston, Houston, Texas, USA

To cite this Article Cetrullo, James and Bernal, Ivan(1991) 'The Phenomenon of Conglomerate Crystallization. XXII. Synthesis and Structural Characteristics of H -Carbonato $\left(O, O\right.$ ' -trans- $\left[\mathrm{CO}(2,3,2 \text {-tet })\left(\mathrm{NO}_{2}\right)\right]_{2} \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{\prime}$, Journal of Coordination Chemistry, 23: 1, $257-268$
To link to this Article: DOI: 10.1080/00958979109408256
URL: http://dx.doi.org/10.1080/00958979109408256

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

THE PHENOMENON OF CONGLOMERATE CRYSTALLIZATION. XXII. SYNTHESIS AND STRUCTURAL CHARACTERISTICS OF μ-CARBONATO $\left(O, O^{\prime}\right)$-trans-[Co(2,3,2-tet) $\left.\left(\mathrm{NO}_{2}\right)\right]_{2} \mathrm{Cl}_{2} \cdot \mathbf{3 H} \mathbf{H}_{\mathbf{2}} \mathrm{O}^{*}$

JAMES CETRULLO and IVAN BERNAL*
Chemistry Department, University of Houston, Houston, Texas 77204-5641, U.S.A.

(Received October 10, 1990)

The unique, dinuclear, symmetrically $\mu-\mathrm{CO}_{3}$ bridged compound, μ-carbonato(O, O^{\prime})-trans-[$\mathrm{Co}(2,3,2-\mathrm{tet})$ $\left.\left(\mathrm{NO}_{2}\right)\right]_{2} \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$, was prepared by hydrogen peroxide oxidation of Co^{+2} in the presence of the 2,3,2-tet polyamine ligand, followed by addition of NaNO_{2}. (1) crystallizes in the racemic space group $P 2_{1} / n$ with cell constants $a=9.187(1) \AA, b=23.520(2), c=14.201(1), \beta=103.87(9), V=2978.90 \AA^{3}$ and $d(Z=4 \mathrm{~mol} / \mathrm{cell})=1.599 \mathrm{~g} \mathrm{~cm}^{-3}$. Data were collected in the range $4^{\circ} \leq 20 \leq 50^{\circ}$, for a total of 5361 reflections, of which 3285 were independent and had $I \geq 3 \sigma(I)$. These were used in the solution and refinement of the structure. The $F(h k l)_{o b s}$ were corrected for absorption ($\mu=13.540 \mathrm{~cm}^{-1}$) using Psi scan curves of eight suitable reflections, leading to transmission coefficient adjustments ranging from 0.9049 to 0.9967 . The structure was solved by Patterson methods. Convergence of the refinement using anisotropic thermal parameters for the heavy atoms and idealized hydrogens (fixed $B=5.00 \AA^{2}$) gave $R(F)=0.0510$ and $R_{n}(F)=0.0686$.

The molecule consists of two [trans- $\left.\mathrm{Co}(2,3,2-\mathrm{tet})\left(\mathrm{NO}_{2}\right)\right]$ fragments which are nearly perfect mirror images of each other. These are linked by a symmetric $\left[\left(\mu-\mathrm{CO}_{3}\right)\right]$ bridge having two independent $\mathrm{Co}-\mathrm{C}$ bonds of $\mathrm{Col}-\mathrm{OS}=1.917(2)$ and $\mathrm{Co} 2-\mathrm{O} 6=1.911(2) \AA$. The third oxygen of the CO_{3} - bridge forms two short hydrogen bonds (1.919 and $1.988 \AA$) with a terminal $-\mathrm{NH}_{2}$ hydrogen from each of the two adjacent polyamine ligands. The C-O distances of the bridging oxygens are, respectively, 1.291 (3) and $1.229(3) \AA$ in length. That of the unique $\mathbf{C}-\mathrm{O}$ is $1.277(3)$, which fits the expectations of multiple bonding for this oxygen; yet, its length also reflects the multiple hydrogen bonding of this oxygen. The significance of this coordination mode (bridge bonding to metal and to adjacent ligands through hydrogen bonding) of the carbonato ligand may be established by its being an interesting model compound for biological species in which the metal is surrounded by -NH or -OH containing ligands to which the non-coordinating carbonato oxygen can be anchored.

Keywords: Cobalt(III), carbonato, 2,3,2-tet, dimer, X-ray structure

INTRODUCTION

-Hereafter, we will use the abbreviations 2,3,2-tet and 3,2,3-tet to signify the tetradentate ligands $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$ and $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$, respectively.

The number of well-characterized coordination compounds containing carbonato ligands is surprisingly low considering the ubiquity of the carbonato ion in nature, in general, and of the biological importance of the carbon cycle. Lactoferrin is an example of a metalloprotein whose structure ${ }^{1}$ has been determined and shown to contain two Fe^{3+} centres which bind two carbonato (or bicarbonato) anions.

[^0]A thorough review of carbonato ligands and their stereochemistry was published by Einstein and Willis, ${ }^{2}$ who devised a clever nomenclature to classify these ligands. Of the various modes they classify as known, those described as $2 \mathrm{~L}, 2 \mathrm{M}$ and $3 \mathrm{~L}, 2 \mathrm{M}$ come closest to the species we have observed and herein describe; however, what we have observed is, in fact, a geometrical isomer that shares characteristics of both the $2 \mathrm{~L}, 2 \mathrm{M}$ and $3 \mathrm{~L}, 2 \mathrm{M}$ species described by these authors and exemplified, in the case of $2 \mathrm{~L}, 2 \mathrm{M}$, by compounds such as $\mathrm{KAgCO}_{3}{ }^{3}, \mathrm{Cs}_{4}\left[\mathrm{Rh}_{\left.\left(\mathrm{CO}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}^{4} \text { and by }}\right.$ $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Co}(\mu-\mathrm{OH})_{2}\left(\mu-\mathrm{CO}_{3}\right) \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\right] \mathrm{SO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} ; 5$ and in the case of $3 \mathrm{~L}, 2 \mathrm{M}$ by $\left[(\mathrm{CuL})_{2} \mathrm{CO}_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{~L}=2,4,4,9 \text {-tetramethyl-1,5,9-triazacyclododec-1-ene })^{6}$ and by $\left[\left\{\mathrm{CuCl}(\text { tetramethyl-1,3-propanediamine }\}_{2}\right] \mathrm{CO}_{3}\right]$. ${ }^{7}$

2L, 2M Model

3L,2M Model

2L,2M + 2H Model

Thus, we have observed a new species which we now label as ($2 \mathrm{~L}, 2 \mathrm{M}+1 \mathrm{~L}, 2 \mathrm{H}$) which reflects the fact that two oxygens of the carbonato ligand bridge to two metals, while the third oxygen is a bridge to two amine hydrogens on adjacent metal ligands.

The compound described by Churchill ${ }^{5}$ and ours are, thus far, the only examples known of carbonato-bridged dinuclear Co^{3+} compounds which are well characterized. Churchill et al. ${ }^{5}$ reviewed all other claims to the preparation and isolation of others; whether, in fact, they were correctly formulated seems to be doubtful, for reasons described by them. ${ }^{5}$

Given the longstanding interest and masterful command of cobalt coordination chemistry Arthur Martell has amply demonstrated, and given his interest in the binding of small molecules by cobalt coordination compounds, it is with pleasure that we dedicate this addition to his chosen field of endeavours.

EXPERIMENTAL

Synthesis of μ-carbonato($\mathrm{O}, \mathrm{O}^{\prime}$)-trans- $\left[\mathrm{Co}(2,3,2-\text { tet })\left(\mathrm{NO}_{2}\right)\right]_{2} \mathrm{Cl}_{2} .3 \mathrm{H}_{2} \mathrm{O}$
Dissolve $4.9 \mathrm{~g}(0.02 \mathrm{~mol}) \mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ in 15 ml deionized water. Add $5 \mathrm{~cm}^{3} 30 \%$ hydrogen peroxide with stirring. Add $3.4 \mathrm{~cm}^{3} N, N^{\prime}$-bis(2-aminoethyl)-1,3-propanediamine (0.02 mol) (Kodak) and begin heating. Add 1.4 g sodium nitrite (0.02 mol) and continue heating and stirring for 15 minutes at approximately $60^{\circ} \mathrm{C}$. Approximately one gram of sodium chloride is dissolved in the mixture to encourage precipitation of the chloride salt. The mixture is filtered warm and then set aside to crystallize. The first crop of crystals did not yield a specimen suitable for an X-ray diffraction study. After recrystallization from deionized water at room temperature $\left(21^{\circ} \mathrm{C}\right)$, a specimen suitable for a single crystal study was obtained.

Analyses

Performed by Galbraith Laboratories, Inc. ${ }^{8}$ Theory \%: $\mathrm{C}=25.19, \mathrm{~N}=19.58, \mathrm{H}=$ $6.48, \mathrm{O}=22.37 \%$; observed $\%: \mathrm{C}=24.47, \mathrm{~N}=19.52, \mathrm{H}=6.63, \mathrm{O}=22.29$.

X-ray diffraction

Data were collected with an Enraf-Nonius CAD-4 diffractometer operating with a Molecular Structure Corporation TEXRAY-230 modification ${ }^{9}$ of the SDP-Plus software package. ${ }^{10}$ The crystal was centred with data in the $18^{\circ} \leq 20 \leq 25^{\circ}$ range and examination of the cell constants and Niggli matrix ${ }^{11}$ clearly showed it to crystallize in a primitive, monoclinic lattice whose systematic absences belong to those of the space group $P 2_{1} / n$. The $F(h k l)_{o b s}$ set was corrected for absorption using empirical curves derived from Psi scans ${ }^{9,10}$ of eight reflections. The scattering curves were taken from Cromer and Waber's compilation. ${ }^{12}$

The structure was solved from the vectors of the Patterson function, which produced the two Co atoms. After refinement of the scale factor and their positional and isotropic thermal parameters, a difference Fourier map produced the atoms of the anion and many of the atoms of the cation. The missing atoms were found in subsequent difference maps. The three waters of hydration were also found there. Hydrogen atoms were added to the cation at idealized positions ($\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}=$ $0.95 \AA$).

Refinement proceeded smoothly. Heavy atoms were assigned anisotropic thermal parameters, while the cation hydrogens were added at idealized, fixed positions after each cycle of refinement. The hydrogens of two waters were found at sensible positions and added to the atoms list, but not refined. Those of the third water were not found at satisfactory positions; however, their presence is clear from the agreement in $\% \mathrm{H}$ and $\% \mathrm{O}$. The final $R(F)$ and $R_{w}(F)$ factors were 0.0510 and 0.0686 , respectively. Details of data collection and processing are summarized in Table I.

TABLE I
Summary of data collection and processing parameters for μ-carbonato (O, O)-trans- $\left[\mathrm{Co}(2,3,2-t e t)\left(\mathrm{NO}_{2}\right)\right]_{2} \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.

Space group	$P 2_{1} / n$		
Cell constants	$a=9.187(1) \AA$		
	$b=23.520(2)$		
	$c=14.201(2)$		
	$\beta=103.87(9)$		
Cell volume	$V=2978.90 \AA$		
Molecular formula	$\mathrm{Co}_{2} \mathrm{Cl}_{2} \mathrm{O}_{10} \mathrm{~N}_{10} \mathrm{C}_{15} \mathrm{H}_{46}$		
Molecular weight	$715.36 \mathrm{gm} \mathrm{~mol}^{-1}$		
Density (calc; $\mathrm{Z}=4 \mathrm{~mol} / \mathrm{cell}$)	$1.599 \mathrm{gm} \mathrm{cm}^{-3}$		
Radiation employed	$\operatorname{MoKa}(\lambda=0.71073 \AA)$		
Absorption coefficient	$\mu=13.529 \mathrm{~cm}^{-1}$		
Relative transmission coefficients	0.9049 to 0.9967		
Data collection range	$4^{\circ} \leq 20 \leq 50^{\circ}$		
Scan width	$\Delta 0=1.00+0.35 \tan \theta$		
Total data collected	5361		
Data used in refinement*	3285		
$R=\sum\left\\|F_{0}\left\|-\left\|F_{c} \\| / / \sum\right\| F_{0}\right\|\right.$	0.0510		
$R_{w}=\left[\sum w^{2}\left(\left\|F_{o}\right\|-\left\|F_{c}\right\|\right) 2 / \sum\left\|F_{o}\right\|^{2}\right]^{1 / 2}$	0.0686		
Weights used	$w=\left[\sigma\left(F_{o}\right)\right]^{-2}$		

* The difference between this number and the total is due to subtraction of 2076 data which either were systematically absent (but collected for verification of space group), standards, or did not meet the criterion that $I \geq 3 \sigma(I)$

FIGURE 1 Stereoview of the molecule showing the labels used in the crystallographic study. Note the carbonato bridge and its orientation relative to the terminal $-\mathrm{NH}_{2}$ hydrogens on the adjacent 2,3,2-tet ligand.

FIGURE 2 A packing diagram of the molecules in the monoclinic unit cell.

Figure 1 gives a labelled stereoview of the asymmetric unit; Figure 2 depicts in stereo the packing of the ions in the unit cell. Final positional and equivalent isotropic thermal parameters are given in Table II. Bond lengths and angles are listed in Table III, and torsion angles are given in Table IV.

TABLE II
Positional parameters and estimated standard deviations for μ-carbonato $\left(O, O^{\prime}\right)$-[trans-Co(2,3,2-tet $\left.)\left(\mathrm{NO}_{2}\right)\right]_{2} \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.

Atom	x / a	y / b	z / c	$B\left(\AA^{2}\right)$
Co1	$0.2097(1)$	$0.06057(4)$	$0.31425(6)$	$1.59(2)$
Co2	$0.1995(1)$	$-0.18671(4)$	$0.31901(6)$	$1.48(2)$
Cl1	$0.2345(3)$	$-0.2126(1)$	$0.6423(2)$	$5.63(7)$
Cl2	$0.3630(2)$	$0.06266(9)$	$0.6270(1)$	$3.24(4)$
Ow1	$-0.2325(9)$	$0.1609(4)$	$0.1479(5)$	$7.3(2)$
Ow2	$0.619(1)$	$-0.0631(3)$	$0.1375(5)$	$7.7(2)$
Ow3	$0.5486(9)$	$-0.1667(4)$	$0.0197(6)$	$11.2(3)$
O1	$0.2659(8)$	$0.1595(2)$	$0.4221(4)$	$4.5(2)$
O2	$0.1348(6)$	$0.1726(2)$	$0.2788(4)$	$3.4(1)$
O3	$0.1002(7)$	$-0.2967(2)$	$0.2936(4)$	$4.2(2)$
O4	$0.2671(7)$	$-0.2854(2)$	$0.4237(4)$	$3.9(1)$
O5	$0.2146(6)$	$-0.0174(2)$	$0.2760(3)$	$2.2(1)$
O6	$0.2104(5)$	$-0.1098(2)$	$0.2777(3)$	$1.9(1)$
O7	$0.2361(6)$	$-0.0618(2)$	$0.4186(3)$	$3.0(1)$
N1	$0.1140(7)$	$0.0445(3)$	$0.4188(4)$	$2.3(1)$
N2	$0.0051(7)$	$0.0632(3)$	$0.2296(4)$	$2.5(1)$
N3	$0.3101(7)$	$0.0791(2)$	$0.2109(4)$	$2.2(1)$
N4	$0.4109(7)$	$0.0535(3)$	$0.3981(4)$	$2.6(1)$
N5	$0.2033(7)$	$0.1394(3)$	$0.3429(4)$	$2.4(1)$
N6	$0.3981(7)$	$-0.1804(2)$	$0.4068(4)$	$2.2(1)$
N7	$0.3038(6)$	$-0.2069(2)$	$0.2187(4)$	$1.8(1)$
N8	$-0.0031(6)$	$-0.1911(3)$	$0.2330(4)$	$2.0(1)$
N9	$0.1011(7)$	$-0.1682(3)$	$0.4227(4)$	$2.4(1)$
N10	$0.1874(6)$	$-0.2648(2)$	$0.3495(4)$	$2.0(1)$
C1	$-0.0489(8)$	$0.0569(4)$	$0.3864(5)$	$3.0(2)$
C2	$-0.0983(9)$	$0.0381(4)$	$0.2838(6)$	$3.2(2)$
C3	$-0.017(1)$	$0.0407(4)$	$0.1311(6)$	$3.5(2)$
C4	$0.086(1)$	$0.0684(4)$	$0.0769(5)$	$3.6(2)$
C5	$0.250(1)$	$0.0535(3)$	$0.1144(5)$	$3.4(2)$
C6	$0.4726(9)$	$0.0646(4)$	$0.2476(6)$	$3.7(2)$
C7	$0.5174(9)$	$0.0823(4)$	$0.3531(6)$	$3.3(2)$
C8	$0.5103(9)$	$-0.2071(3)$	$0.3617(6)$	$3.0(2)$
C9	$0.4661(8)$	$-0.1928(4)$	$0.2563(5)$	$2.8(2)$
C10	$0.2445(9)$	$-0.1846(3)$	$0.1196(5)$	$2.7(2)$
C11	$0.0799(9)$	$-0.1994(4)$	$0.0819(5)$	$3.2(2)$
C12	$-0.0193(9)$	$-0.1685(3)$	$0.1330(5)$	$2.9(2)$
C13	$0.0529(9)$	$-0.1604(4)$	$0.2835(6)$	$3.1(2)$
C14	$-0.1779(4)$	$0.3882(6)$	$3.3(2)$	
C15	$-0.0633(3)$	$0.3270(5)$	$1.9(1)$	

Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: $\left.(4 / 3)^{*}\left[a^{2 *} B(1,1)\right)+b^{2 *} B(2,2)+c^{2 *} B(3,3)+a b(\cos \gamma)^{*} B(1,2)+a c(\cos \beta)^{*} B(1,3)+b c(\cos \alpha) * B(2,3)\right]$.

TABLE III
Bond distances and angles for I.
(A) Bond distances in Angstroms

Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance
Col	N1	$1.936(2)$	Col	N2	1.975(2)
Col	N3	$1.960(2)$	Col	N4	1.950(3)
Col	N5	$1.903(3)$	Col	O5	1.917(2)
Co 2	N6	1.954(3)	Co 2	N7	1.957(2)
Co 2	N8	1.968(2)	Co2	N9	1.953(3)
Co2	N10	1.897(2)	Co 2	O6	$1.911(2)$
OI	N5	1.229(3)	O2	N5	1.248(3)
O3	N10	$1.236(3)$	O4	N10	$1.229(3)$
05	Cl5	1.291(3)	O6	Cl 5	1.288(3)
07	Cl 5	1.277(3)	N1	Cl	$1.485(4)$
N2	C2	1.481(4)	N2	C3	1.464(4)
N3	C5	1.477(4)	N3	C6	1.497(4)
N4	C7	1.457(4)	N6	C8	1.478(4)
N7	C9	1.496(4)	N7	C10	1.478(4)
N8	Cl 2	1.490(4)	N8	Cl3	1.498(4)
N9	C14	$1.486(4)$	Cl	C2	1.487(5)
C3	C4	$1.506(5)$	C4	C5	1.508(5)
C6	C7	1.513(5)	C8	C9	1.492(4)
Cl 0	Cl 1	1.519(4)	Cll	Cl 2	1.484(5)
Cl3	Cl 4	1.503(5)			

(B) Bond angles in degrees

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
OS	Col	Nl	94.32(9)	O5	Col	N2	86.6(1)
O5	Col	N3	87.33(9)	O5	Col	N4	90.5(1)
O5	Col	N5	176.0(1)	NI	Col	N2	86.1(1)
N1	Col	N3	178.1(1)	N1	Col	N4	93.1(1)
N1	Col	N5	89.1(1)	N2	Col	N3	95.0(I)
N2	Col	N4	176.9(1)	N2	Col	N5	91.5(1)
N3	Col	N4	85.9(1)	N3	Col	N5	89.3(1)
N4	Col	N5	91.5(1)	06	Co 2	N6	90.8(1)
O6	Co 2	N7	86.34(9)	O6	Co 2	N8	88.3(1)
06	Co 2	N9	95.08(9)	06	Co 2	N10	175.4(1)
N6	Co 2	N7	86.4(1)	N6	Co 2	N8	178.1(1)
N6	Co 2	N9	91.8(1)	N6	Co 2	N10	91.4(1)
N7	Co 2	N8	95.2(1)	N7	Co 2	N9	177.8(1)
N7	Co 2	N10	89.8(1)	N8	Co 2	N9	86.6(1)
N8	Co2	N10	89.6(1)	N9	Co 2	N10	88.9(1)
Col	O5	Cl5	130.1(2)	Col	N1	Cl	109.5(2)
Col	N2	C2	107.9(2)	Col	N2	C3	117.6(2)
Col	N2	H8	144.4(1)	Col	N2	H9	104.4(1)
Col	N3	C5	117.7(2)	Col	N3	C6	107.3(2)
Col	N4	C7	109.3(2)	Col	N5	Ol	122.5(2)
Col	N5	O2	119.3(2)	Co 2	O6	Cl5	129.9(2)
Co 2	N6	C8	109.4(2)	Co 2	N7	C9	107.9(2)
Co 2	N7	C10	118.3(2)	Co 2	N8	Cl 2	115.9(2)
Co2	N8	C13	106.7(2)	Co 2	N9	Cl 4	109.5(2)

TABLE III (cont.)
(B) Bond angles in degrees

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
Co2	Ni0	03	120.4(2)	Co 2	N10	O4	121.5(2)
O1	N5	O 2	118.1(3)	O3	N10	O4	118.2(3)
O5	Cl 5	O6	114.8(2)	O5	C15	07	121.7(3)
O6	Cl 5	O7	123.4(3)	NI	Cl	C2	107.0(3)
N2	C2	Cl	107.9(3)	N2	C3	C4	111.9(3)
N3	C5	C4	110.7(3)	N3	C6	C7	107.1(3)
N4	C7	C6	104.8(3)	N6	C8	C9	106.8(3)
N7	C9	C8	108.4(3)	N7	C10	Cl 1	$111.2(3)$
N8	Cl 2	Cll	111.0(3)	N8	Cl3	Cl 4	107.2(3)
N9	Cl4	Cl 3	106.7(3)	C2	N2	C3	113.1(3)
C5	N3	C6	110.6(3)	C9	N7	C10	111.6(3)
Cl 2	N8	Cl 3	110.7(3)	C3	C4	C5	114.5(3)
C10	Cl 1	C12	113.1(3)				

(C) Hydrogen bonds (distances in \AA, angles in ${ }^{\circ}$)

Intramolecular:

$\mathrm{O} 2-\mathrm{H} 7$	$2.210(2)$	$\mathrm{N} 2-\mathrm{H} 7 \ldots . \mathrm{O} 2$	$123.9(2)$
$\mathrm{O} 3-\mathrm{H} 34$	$2.069(2)$	$\mathrm{N} 8-\mathrm{H} 34 \ldots . \mathrm{O} 3$	$124.7(2)$
O7-H2	$1.919(2)$	$\mathrm{N} 1-\mathrm{H} 2 \ldots . \mathrm{O} 7$	$143.3(2)$
O7-H39	$1.988(2)$	$\mathrm{N} 9-\mathrm{H} 39 \ldots . \mathrm{O} 7$	$142.3(2)$

Intermolecular:

Cll-Hw2	2.232(1)	Owl-Hw2... Cll	154.2(2)	Owl at $-x,-y, 1-z$
Cl2-Hw4	2.250(1)	Ow2-Hw4 . . . Cl 2	179.1(2)	Ow2 at $1-x,-y, 1-z$
O2-H27	2.027(2)	N7-H27....O2	149.6(2)	O2 at $1 / 2-x,-1 / 2+y, 1 / 2-z$
O3-H14	2.217(2)	N3-H14....O3	144.4(2)	O3 at $1 / 2-x, 1 / 2+y, 1 / 2-z$

Numbers in parentheses are estimated standard deviations.

TABLE IV
Torsional angles (in degrees) for I.

Atom 1	Atom 2	Atom 3	Atom 4	Angle	Atom I	Atom 2	Atom 3	Atom 4	Angle
N1	Col	O5	C15	-29.3	N9	Co 2	N7	C9	-51.8
N2	Col	O5	C15	-115.1	N9	Co 2	N7	C10	-179.6
N3	Col	O5	Cl 5	149.7	N10	Co 2	N7	C9	-104.8
N4	Col	O5	C15	63.8	N10	Co 2	N7	Cl 0	127.4
N5	Col	O5	Cl 5	-176.6	O6	Co 2	N8	Cl 2	46.8
O5	Col	N1	Cl	-100.2	O6	Co 2	N8	Cl 3	-77.0
N2	Col	N1	Cl	-13.9	N6	Co2	N8	$\mathrm{Cl2}$	109.6
N3	Col	NI	Cl	110.5	N6	Co 2	N8	CI3	-14.2
N4	Col	N1	Cl	169.1	N7	Co 2	N8	Cl 2	-39.4
N5	Col	N1	Cl	77.6	N7	Co 2	N8	Cl 3	-163.1
O5	Col	N2	C2	80.6	N9	Co 2	N8	C12	142.0

TABLE IV (cont.)

Atom 1	Atom 2	Atom 3	Atom 4	Angle	Atom 1	Atom 2	Atom 3	Atom 4	Angle
O5	Col	N2	C3	-48.9	N9	Co 2	N8	Cl3	18.2
N1	Col	N2	C2	-14.0	N10	Co 2	N8	C 12	-129.1
N1	Col	N2	C3	-143.4	N10	Co 2	N8	C13	107.1
N3	Col	N2	C2	167.6	O6	Co 2	N9	C14	98.5
N3	Col	N2	C3	38.2	N6	Co 2	N9	C14	-170.6
N4	Col	N2	C2	59.9	N7	Co 2	N9	C14	-132.2
N4	Col	N2	C3	-69.5	N8	Co 2	N9	C14	10.5
N5	Col	N2	C2	-103.0	N10	Co 2	N9	C14	-79.2
N5	Col	N2	C3	127.6	O6	Co 2	N10	O3	-40.0
O5	Col	N3	C5	47.2	O6	Co 2	N10	04	138.5
OS	Col	N3	C6	-78.3	N6	Co 2	N10	O3	-159.0
N1	Col	N3	C5	-163.4	N6	Co 2	Ni0	04	19.5
N1	Col	N3	C6	71.1	N7	Co 2	N10	O3	-72.6
N2	Col	N3	C5	-39.2	N7	Co 2	Ni0	O4	106.0
N2	Col	N3	C6	-164.6	N8	Co 2	N10	O3	22.6
N4	Col	N3	C5	137.8	N8	Co 2	N10	O4	-158.8
N4	Col	N3	C6	12.4	N9	Co 2	N10	O3	109.2
N5	Col	N3	C5	-130.6	N9	Co 2	Ni0	04	-72.3
N5	Col	N3	C6	104.0	Col	O5	Cl 5	06	174.1
O5	Col	N4	C7	105.6	Col	O5	Cl 5	O7	-3.3
N1	Col	N4	C7	-160.0	Co 2	06	Cl 5	O5	-174.4
N2	Col	N4	C7	126.3	Co 2	O6	Cl5	O7	2.9
N3	Col	N4	C7	18.3	Col	NI	Cl	C2	38.8
N5	Col	N4	C7	-70.9	Col	N2	C2	Cl	39.0
O5	Col	N5	O1	-152.4	C3	N2	C2	Cl	170.9
O5	Col	N5	O 2	26.5	Col	N2	C3	C4	-54.9
NI	Col	N5	Ol	60.2	C2	N2	C3	C4	178.2
N1	Col	N5	O2	-120.9	Col	N3	C5	C4	56.7
N2	Col	N5	Ol	146.2	C6	N3	C5	C4	-179.5
N2	Col	N5	O 2	-34.8	Col	N3	C6	C7	-39.7
N3	Col	N5	Ol	-118.8	C5	N3	C6	C7	-169.2
N3	Col	N5	O2	60.2	Col	N4	C7	C6	-43.9
N4	Col	N5	Ol	-32.9	Co 2	N6	C8	C9	38.4
N4	Col	N5	O2	146.1	Co 2	N7	C9	C8	38.2
N6	Co 2	O6	Cl 5	-61.4	C10	N7	C9	C8	169.8
N7	Co 2	O6	Cl 5	-147.8	Co 2	N7	Cl0	CII	-54.2
N8	Co 2	06	Cl 5	116.9	C9	N7	Cl 0	Cll	179.7
N9	Co 2	06	Cl 5	30.5	Co 2	N8	Cl 2	Cll	59.4
N10	Co 2	06	Cl5	179.6	C13	N8	Cl 2	ClI	-179.0
O6	Co 2	N6	C8	-100.4	Co2	N8	C13	C14	-43.1
N7	Co 2	N6	C8	-14.1	C12	N8	C13	C14	-170.0
N8	Co2	N6	C8	-163.1	Co2	N9	Cl4	C13	-36.8
N9	Co 2	N6	C8	164.5	NI	Cl	C2	N2	-50.9
N10	Co 2	N6	C8	75.6	N2	C3	C4	C5	68.7
O6	Co 2	N7	C9	77.7	C3	C4	C5	N3	-69.2
O6	Co2	N7	C10	-50.1	N3	C6	C7	N4	54.7
N6	Co 2	N7	C9	-13.4	N6	C8	C9	N7	-50.2
N6	Co 2	N7	Cl 0	-141.2	N7	C10	C11	Cl 2	69.2
N8	Co2	N7	C9	165.6	Cl 0	C11	Cl 2	N8	-72.5
N8	Co2	N7	ClO	37.8	N8	Cl 3	C14	N9	52.5

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

The ${ }^{13} \mathrm{C}$ nmr spectrum was recorded at room temperature in $\mathrm{D}_{2} \mathrm{O}$ and referenced against the ${ }^{13} \mathrm{C}$ of TMS using a Nicolet NT- 300 spectrometer equipped with a Tecmag Libra data station. Its trace is displayed in Figure 3. The chemical shifts of the resonances are given on the trace.

DISCUSSION

Prior to this study, we had prepared a number of related, mononuclear, derivatives of 2,3,2-tet and 3,2,3-tet and the characteristics of the unit cells of some of these substances are listed below.

Compound Space Group etc.

trans-[Co(3,2,3-tet) $\left.\mathrm{Cl}_{2}\right] \mathrm{NO}_{3}$	$P 2_{1}$	$V=739.59$	$Z=2$
	$M=366.14$	$d=1.646$	
trans-[Co(2,3,2-tet) $\left.\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{NO}_{3}$	$P 2_{1} / n$	$V=1395.89$	$Z=4$
	$M=373.21$	$d=1.776$	
trans-[Co(3,2,3-tet) $\left.\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{Cl}^{2} 3 \mathrm{H}_{2} \mathrm{O}$	$P 2_{1} 2_{1} 2_{1}$	$V=1720.07$	$Z=4$
	$M=414.73$	$d=1.601$	

Since the volume and density of the unit cell of (I) are $2978.90 \AA^{3}$ and 1.599 gm cm^{-3}, respectively, it must either have 2 molecules in the asymmetric unit, or be a dimeric species. Therefore, we were not surprised when the latter alternative was found to be correct; however, we could not be sure of the nature of the bridge since nothing like it had been observed before, irrespective of whether the bridge was a μ-carbonato or a μ-nitrato fragment. Thus, simple tests such as the IR spectrum of (I) would not be an acceptable standard to differentiate between the several possibilities.

The presence of three waters of crystallization in the lattice seemed very clear from the elemental analysis and the X-ray structure; however, we could not find either of the hydrogens of one water, at least not at positions we were satisfied with. Therefore, what we called a water could, theoretically be an OH -anion, thus allowing for the presence of a μ-nitrato bridge. Finally, the carbon analysis was a little low, even if all the other analyses clearly pointed to its formulation as a μ-carbonato compound. Consequently, we resorted to nmr methods to distinguish between the two possibilities.

The four signals in the ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectrum nearest to TMS (32.9, 48.0, 53.1 and 59.8 ppm) are in the expected intensity ratio of 1:2:2:2 for the carbons of the 2,3,2-tet ligand. The presence of a ${ }^{13} \mathrm{C}$ resonance at 174.7 ppm (from TMS; which is the region of the ${ }^{13} \mathrm{C}$ signals reported for the $-\mathrm{C}=\mathrm{O}$ - moieties of $\mathrm{K}[\mathrm{Co}(E D T A)],{ }^{13}$ where the carbonyl ${ }^{13} \mathrm{C}$ resonances (TMS as standard) fell in the region of 182.4 to 185.9 ppm , while those of the $-\mathrm{CH}_{2}-$ fell in the region of 64.5 to 67.4 ppm) is significant. This is consistent with the spectrum shown in Figure 3, thus leaving no doubt that the bridging species is a carbonato ligand. This observation relieves us from further consideration that the bridge is an NO_{3} - ligand obtained from the oxidation of the $\mathrm{NO}_{2}-$ anions by hydrogen peroxide an equally attractive and
intriguing possibility given the circumstances of the synthetic procedure and the known ability of certain metals to catalyze redox processes of small molecules. ${ }^{14}$

The molecule (see Fig. 1) can be visualized as two halves of composition [trans-$\left.\mathrm{Co}(2,3,2-\mathrm{tet})\left(\mathrm{NO}_{2}\right)\right]$, linked by a symmetrically disposed $\left(\mu-\mathrm{CO}_{3}\right)$ bridge. The two five membered rings on each of the [trans- $\left.\mathrm{Co}(2,3,2-\mathrm{tet})\left(\mathrm{NO}_{2}\right)\right]$ fragments are inherently chiral, as expected; since they have opposite torsional angles (see below) the overall fragment is mesomeric insofar as the chiral properties of these rings are concerned. The central, six-membered ring is inherently mesomeric since the two chiral, secondary nitrogens are enantiomorphically related as a result of the need to orient the $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$ fragments in equatorial positions (e.g., using the ranking order $\mathrm{Co}>\mathrm{C} 3>\mathrm{C} 2>\mathrm{N} 2$ is (R), using the ranking order $\mathrm{Co}>\mathrm{C} 5>\mathrm{C} 6, \mathrm{~N} 3$ is (S), using the ranking order $\mathrm{Co}>\mathrm{Cl} 0>\mathrm{C} 9, \mathrm{~N} 7$ is (R)), and using the ranking order $\mathrm{Co}>\mathrm{Cl2}>\mathrm{Cl} 3$, N8 is (S)).

FIGURE 3 The ${ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{spectrum} ,\mathrm{referenced} \mathrm{against} \mathrm{TMS} .\mathrm{The} \mathrm{smallest} \mathrm{peak}$,at 174.7 ppm , is due to the carbonato bridge (see text).

The arrangement of the two $\left[\right.$ trans $\left.-\mathrm{Co}(2,3,2-\mathrm{tet})\left(\mathrm{NO}_{2}\right)\right]$ halves is such that the molecule possesses a nearly perfect mirror plane passing through the $\mathrm{Cl} 5-\mathrm{O} 7$ vector of the $\left[\left(\mu-\mathrm{CO}_{3}\right)\right]$ bridge. The chirality relationships are illustrated by the information tabulated below.

Fragment

Chirality
Torsional Angle

$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2-\mathrm{N} 2$	-50.9	λ
$\mathrm{~N} 3-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 4$	+54.7	δ
$\mathrm{~N} 6-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 7$	-50.2	λ
$\mathrm{~N} 8-\mathrm{Cl} 3-\mathrm{C} 14-\mathrm{N} 9$	+52.5	δ

The dispositions of these fragments are clear from Figure 1. Thus, the $\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2-$ N2 ligand (λ) can be mirrored into N8-C13-C14-N9(δ); the same observation applies to the N3-C6-C7-N4 and N6-C8-C9-N7 ligand fragments. Therefore, the molecule is mesomeric not only from the standpoint of the chiralities of the two trans-$\mathrm{Co}(2,3,2-\mathrm{tet})\left(\mathrm{NO}_{2}\right)$ halves of the dimer, but from the internal chirality properties of the relevant fragments within each of the constituent halves.

As a result of the above observations, it is not surprising that the molecule crystallizes in a racemic space group, $P 2_{1} / n$. The same remarks can be made con-
cerning the closely related compound, $\left[\right.$ trans $\left.-\mathrm{Co}(2,3,2-\mathrm{tet})\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{NO}_{3}$ (II) which shares with (I) a common [trans-Co(2,3,2-tet)(NO_{2})] fragment. (II) crystallizes in the same racemic space group as (I) the most common of all the racemic space groups. ${ }^{15}$

The most significant hydrogen bonds formed in this molecule are those between the non-ligating oxygen of the carbonato bridge and the hydrogens of the adjacent primary amines from either half of the dimer (see Table III, part C). This is due not only to their strength (short distance and favourable bond angle) but also to their contribution to the stereochemistry of the species. By artificially inverting the positions of the atoms of one half of the dimer to give the rings formed by the 2,3,2tet ligand the same conformations in both halves of the dimer, the minimum hydrogen bonding distance from the amine hydrogens of the inverted 2,3,2-tet ligand to the non-ligating oxygen of the carbonate increases from approximately 1.9 to $2.4 \AA$. Thus, despite the approximate nature of this estimate, an increase of this magnitude eliminates any additional stability that would be gained by such an isomer from the formation of this hydrogen bond, making a pair of homochiral ligands in the dimeric species an unfavourable prospect. There also exists an additional network of hydrogen bonds involving the secondary amine hydrogens and the nitro group oxygens that is similar to other metal amine complexes containing the same types of ligands. ${ }^{16,17}$ Note that O 2 and O 3 are both locked into position by a pair of intramolecular and intermolecular hydrogen bonds. In the case of O 2 , the intermolecular hydrogen bond is stronger than the intramolecular hydrogen bond. In the case of O3, the situation is reversed. This arrangement is due to the nitro groups, which are free to rotate, accommodating the most favourable hydrogen bonds offered by the positioning of the amine hydrogens of each polyamine ligand.

ACKNOWLEDGEMENTS

We thank the Robert A. Welch Foundation for a research grant (E-594 to I.B.) and for a Fellowship to James Cetrullo. The National Science Foundation provided the funds for purchasing the X-ray diffractometer.

SUPPLEMENTARY MATERIAL

Fill lists of hydrogen positions, anisotropic thermal parameters, and observed and calculated structure factors are available from I.B.

REFERENCES

1. (a) B.F. Anderson, H.M. Baker, E.J. Dodson, G.E. Norris, S.V. Rumball, J.M. Waters and E.N. Baker, Proc. Natl. Acad. Sci. U.S.A., 84, 1769 (1987); (b) E.N. Baker, S.V. Rumball and B.F. Anderson, Trends in Biochem., 12, 350 (1987).
2. F.W.B. Einstein and A.C. Willis, Inorg. Chem., 20, 609 (1981).
3. G.A. Barclay and B.F. Hoskins, J. Chem. Soc., 2807 (1963).
4. F.A. Cotton and T.R. Felthouse, Inorg. Chem., 19, 320 (1980).
5. M.R. Churchill, R.A. Lashewycz, K. Koshy and T.P. Dasgupta, Inorg. Chem., 20, 376 (1981).
6. A.R. Davies, F.W.B. Einstein, J.W. Martin and N.F. Curtis, J. Am. Chem. Soc., 100, 6258 (1978).
7. M.R. Churchill, G. Davis, M.A. El-Sayed, M.F. El-Shazly, J.P. Hutchinson, M.W. Rupich and K.O. Watkins, Inorg. Chem., 18, 2296 (1979).
8. Analyses by Galbraith Laboratories, Inc., 2323 Sycamore Dr., Knoxville, TN 37921-1750.
9. TEXRAY-230 is a modification of the SDP-Plus ${ }^{10}$ set of X-ray crystallographic programs distributed by Molecular Structure Corporation, 3200 Research Forest Dr., The Woodlands, TX 77386 for use with their automation of the CAD-4 diffractometer.
10. SDP-Plus is the Enraf-Nonius Corporation X-ray diffraction data processing programs distributed by B.A. Frenz and Associates, 1140 East Harvey Road, College Station, TX, 77840.
11. R.B. Roof, "A Theoretical Extension of the Reduced Cell Concept in Crystallography", Report LA-4038, Los Alamos Scientific Laboratory, 1969.
12. D.T. Cromer and J.T. Waber, "International Tables for X-Ray Crystallography", (The Kynoch Press, Birmingham, England, 1975); Vol. IV, Tables 2.2 .8 and 2.3.1, respectively, for the scattering factor curves and the anomalous dispersion values.
13. For a variety of salts of the type $\mathrm{K}[\mathrm{Co}(\mathrm{EDTA})]$, see O.W. Howarth, P. Moore and N. Winterton, J. Chem. Soc., Dalton Trans., 2271 (1974).
14. (a) M. Beley, J.-P. Collin, R. Rupert and J.-P. Sauvage, J. Am. Chem. Soc., 108, 7461 (1986); (b) H.-L. Li, J.Q. Chambers and D.T. Hobbs, J. Electroanal. Chem., 256, 447 (1988); (c) H.-L. Lin, W.C. Anderson, J.Q. Chambers and D.T. Hobbs, Inorg. Chem., 28, 863 (1989).
15. I. Bernal and J. Cetrullo, to be published.
16. I. Bernal and J. Cetrullo, Inorg. Chim. Acta, 122, 213 (1986).
17. I. Bernal and J. Cetrullo, Inorg. Chim. Acta, 131, 201 (1987).

[^0]: * On the occasion of Arthur Martell's 75th birthday.

